物体の姿勢変化にロバストな物体追跡技術

~ヒストグラムによる姿勢変化にロバストな追跡~ 岩手大学工学部電気電子・情報システム工学科 准教授/明石卓也

1. 背景と目的

- 顔検出技術
 - 顔器官検出,表情推定
- Haar-like特徴を用いたAdaBoostに基づくカスケード型識別器
 - AdaBoost法:弱識別器を組み合わせ強識別器を構築
 - 複雑な背景下でも高精度で検出可能
- 既存手法の問題点
 - 特定の姿勢の顔のみ高精度で検出可能
 - ◆ 正面顔, 横顔など
 - 学習データの量, 質に精度が依存
- 顔の向きの変化にロバストな顔検出
 - 上下左右の向き
 - 学習データを用いない

2. 進化的動画像処理

- 遺伝的アルゴリズムを用いたテンプレートマッチング
 - GAの目的
 - ◆ テンプレートとの一致度が最も高い領域を発見
 - 最適化するパラメータ
 - ◆ テンプレートと比較する候補領域をパラメータで表現
 - 個体=テンプレートと比較する領域
 - 染色体
 - ◆ 位置, 大きさ, 回転角度
 - ■問題点
 - ♦ 静止画処理
 - ◆ 計算コスト

染色体

angle

- 進化的動画像処理
 - 初期化は最初のフレームのみ
 - 遺伝情報をフレーム間で継承
 - 少ない個体数で高精度な処理

4. 実験

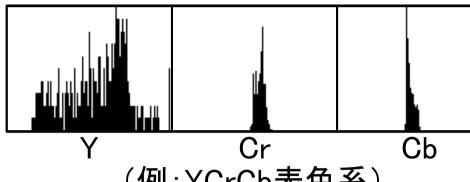
- 実験目的
 - 表色系,成分の組み合わせによる精度の比較 ◆ YCrCb, YCr, YCb, CbCr, Y, Cr, Cb, HSV, HS, HV, SV, H, S, V
- 評価方法
 - 正解座標を目視で決定
 - ◆ 正解座標:ターゲット画像の顔の中心の座標
 - 正解画像と結果座標の距離を比較
 - ◆ 結果座標: 結果矩形の中心座標
 - 距離が10 pixel以内であれば正解
- 結果と考察
 - 追跡精度
 - ◆ 上位4つの結果
 - ◆ Cr成分を使用することで顔向きにロバストな検出が可能
 - ◆ Cr成分(赤色の式さ)が大きく影響
 - ◆ 肌, 口唇: 赤み成分が高い
 - 1フレームあたりの処理時間
 - ◆ CPU:3.2GHz
 - ◆ Cr成分のみ:32.96ミリ秒 ◆ CrCb成分:47.11ミリ秒
 - ◆ YCbCr成分: 66.1ミリ秒
 - ◆ 1成分のみを使用すればリアルタイム処理が可能

追跡精度

色データのタイプ	平均精度(%, 試行回数:5回)
Cr	82.92
YCr	80.34
CrCb	75.73
YCrCb	72.25
HV	67.64
Cb	61.35

3. 提案手法

- 進化的動画像処理を用いたヒストグラムテンプレートマッチング
 - テンプレート
 - ◆ 顔領域から得られたヒストグラム
- ヒストグラムテンプレートの取得



入力画像

正面顔の検出

顔領域の抽出

(例:YCrCb表色系) ヒストグラムテンプレート

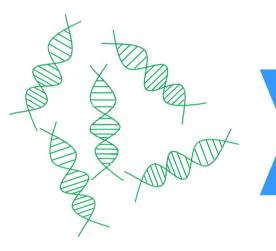
適応度

■ ヒストグラムテンプレートと各個体があらわすヒストグラムを比較

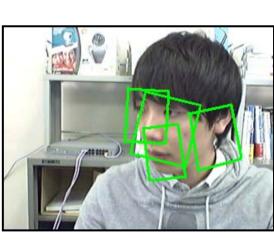
 $fitness = \sqrt{\rho_1^2 + \rho_2^2 + \rho_3^2}, \quad 0 \le fitness \le \sqrt{3}$

 ρ :ヒストグラムの類似度

i:表色系の成分

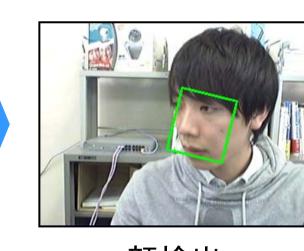

p:ヒストグラムテンプレートの各ビンにおける頻度

q:個体のヒストグラムの各ビンにおける頻度


m:ビン数の合計

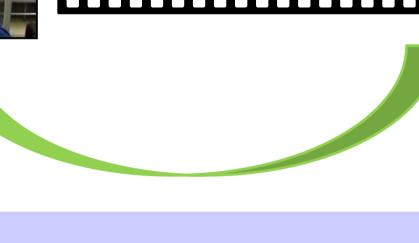
N: テンプレートの元画像の画素数

処理の流れ

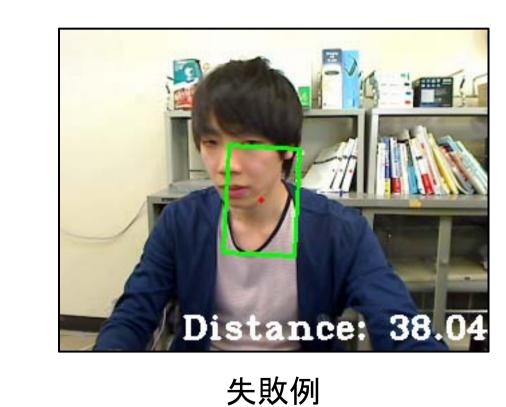

個体集団

デコード&評価

世代交代



顔検出



ビデオシーケンスから フレームを取得

成功例

Distance: 6.18

5. まとめと今後の課題

- まとめ
 - 顔の向きの変化にロバストな顔検出

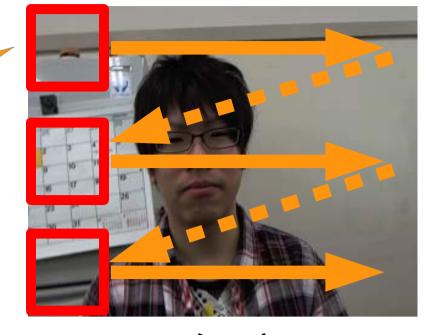
Distance: 4.28

- ◆ 進化的動画像処理によるヒストグラムテンプレートマッチングの提案
- ◆ 表色系の成分の組み合わせによる結果の比較
- ◆リアルタイム処理が可能

- 今後の課題
 - より多くの被験者による有効性の検証
 - 被験者やカメラの複雑な動き
 - テンプレートの取得方法の検討

Phone & Fax: +81-19-621-6464, Email: akashi@iwate-u.ac.jp

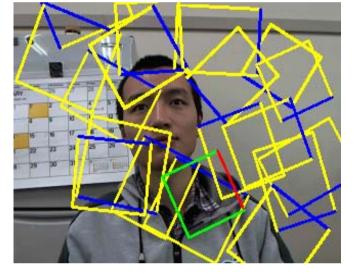
物体の姿勢変化にロバストな物体追跡技術



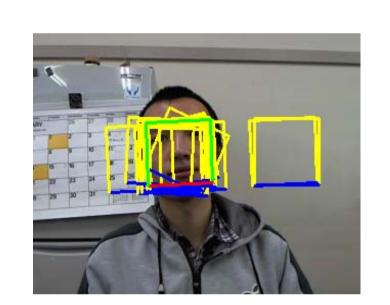
~PSOを用いた顔センシング~ 岩手大学工学部電気電子・情報システム工学科 准教授/明石卓也

1. 研究背景

- 物体検出の一般的な走査方法
 - ラスタスキャン
 - 複数のスケールの探索窓
 - ◆ 画像全体を反復的にスキャン


非効率

ラスタスキャン


解決策

- 最適化手法
 - 遺伝的アルゴリズム(GA)
 - 粒子群最適化(PSO)
 - 焼きなまし法(SA)
 - 蟻コロ二一最適化(ACO)

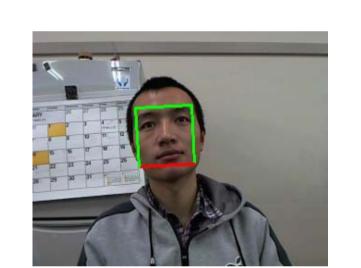
目的関数に基づき効率的な 探索が可能

50反復目

100反復目

(多様性:低)

初期反復 (多様性:高)


• PSOの問題点

- 再追跡
 - ◆ 検出失敗
 - ◆ 追跡対象の消失

解決策

多様性の維持

1フレーム目 (失敗)

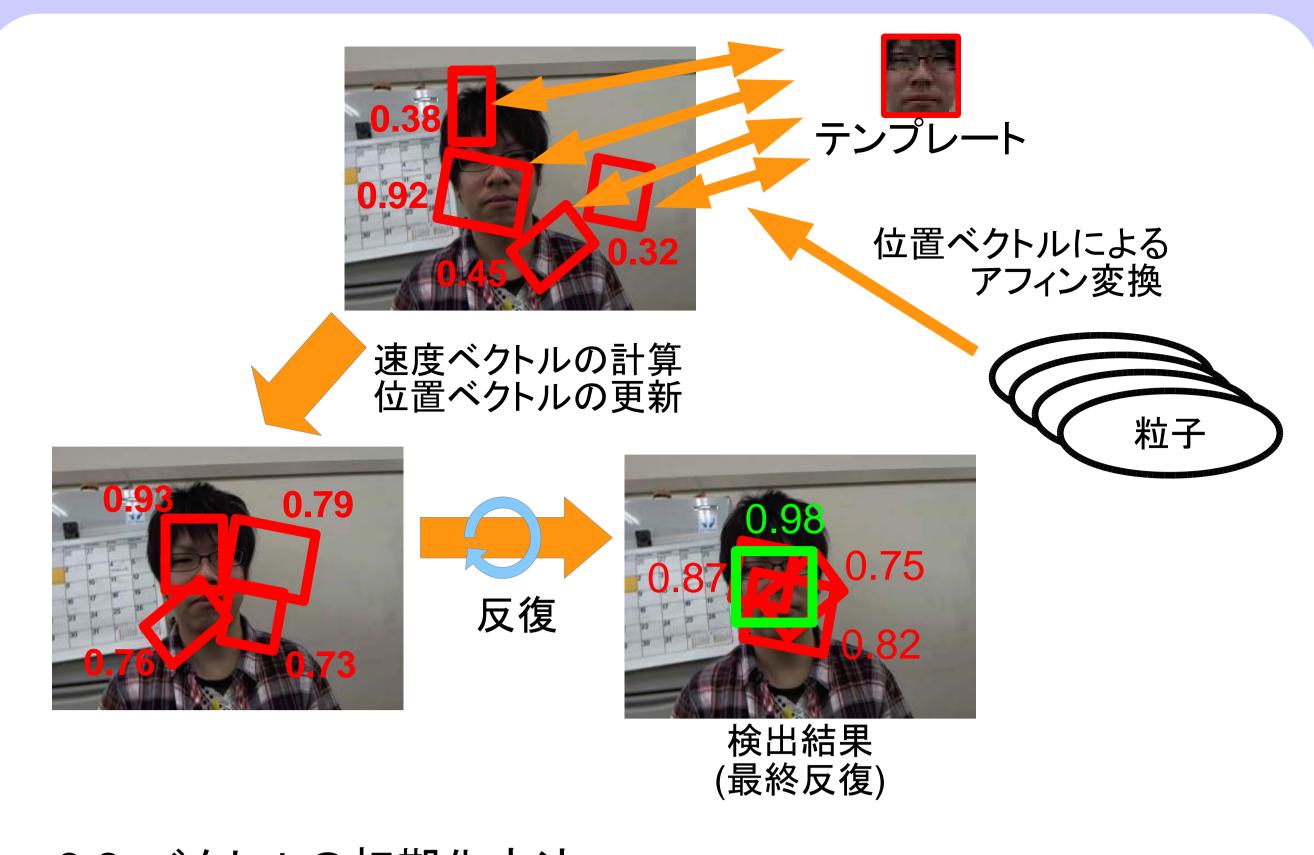
2フレーム目 (成功)

PSOには多様性を維持するための 処理が存在しない

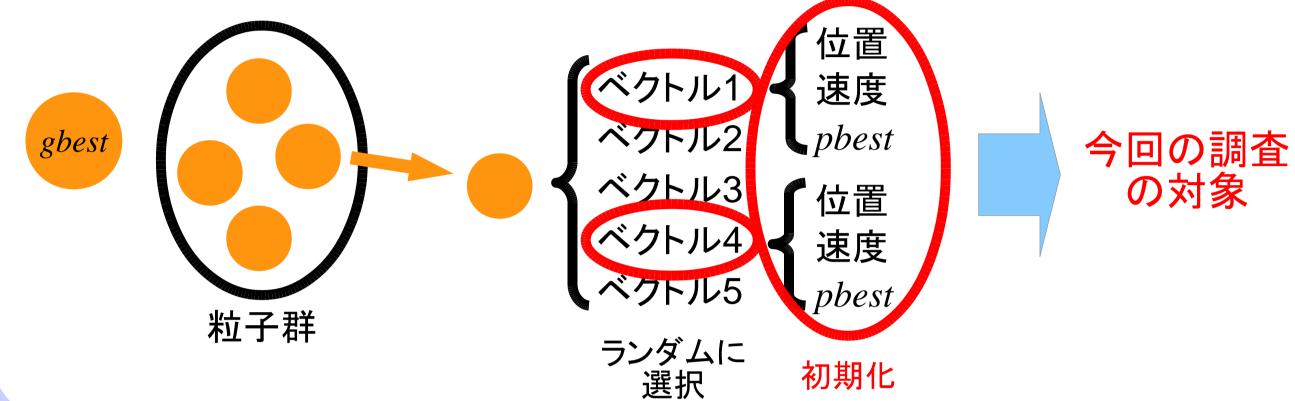
- ・新たな処理の追加
 - 一定確率でベクトルを初期化

初期化する最適なベクトルを決定する必要性がある

2. 研究目的

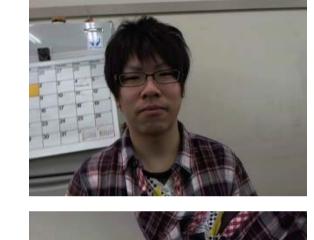

- ●調査
 - 初期化に最適なベクトル
 - ◆ 多様性の維持
 - ■精度の変化

3. 手法


3.1. PSOを用いたテンプレートマッチング

- 粒子情報
 - 位置ベクトル

 - ◆ 5つのパラメータ
 - ◆ アフィン変換
 - 速度ベクトル位置ベクトルに対応
- pbest
 - ◆ 位置ベクトル
- gbest
 - ◆ 位置ベクトル
 - ◆ 粒子群の中で最も高いマッチング率



3.2. ベクトルの初期化方法

4. 実験

- PSOの設定
 - 粒子数: 10, 30, 50
 - 反復数: 100
- 実験回数: 10
 - 異なる乱数種
- ターゲットシーケンス
 - ウェブカメラで撮影
- ▶計算機
 - CPU: 3.2 Ghz
 - メモリ: 4 GB

ターゲットシーケンス例

5. 実験結果

		精度 (%)		処理時間 (ms)		
初期化する ベクトル	少 ←	粒子数	→ 多	少←	粒子数	→ 多
	10	30	50	10	30	50
位置	87.3	89.0	91.5	37.8	113.1	188.7
速度	75.8	94.1	95.3	38.9	117.2	196.8
pbest	2.8	4.4	9.8	40.5	120.8	200.1
位置, 速度	87.9	96.8	98.2	39.4	117.9	196.4
速度, pbest	76.4	93.5	97.2	39.3	118.7	200.6
pbest, 位置	83.8	92.6	93.9	37.7	113.8	189.5
位置,速度, pbest	91.1	97.2	97.9	38.1	113.0	189.6

6. 考察と結論

- ●すべてのベクトルを初期化
 - 高い精度
 - ◆ pbestの初期化
 - ◆ 探索方向の変化
 - 広域的な探索
- ・課題
 - 多様性維持手法の提案
 - ◆ より高い精度

物体の姿勢変化にロバストな物体追跡技術

~コンピュータビジョンとARの融合~

岩手大学工学部電気電子・情報システム工学科准教授/明石卓也

1. はじめに

- AR(Augmented Reality): 拡張現実感
 - ■人が知覚する現実環境をコンピュータにより拡張
 - ■計算能力の高いモバイル端末の普及
 - ◆実現可能性の向上

●ARの実現方法

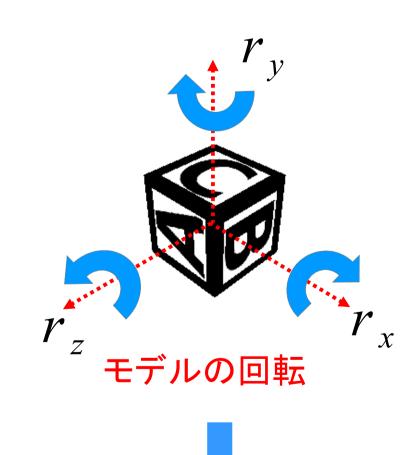
- ■2次元マーカ
 - ◆カメラでマーカ情報を取得
- ◆CGモデルの姿勢決定
- ◆マーカを自由に作成可能
- ◆ロバスト性
 - ●マーカとカメラの姿勢
 - ●遮蔽
 - ■手
 - ■他のマーカ

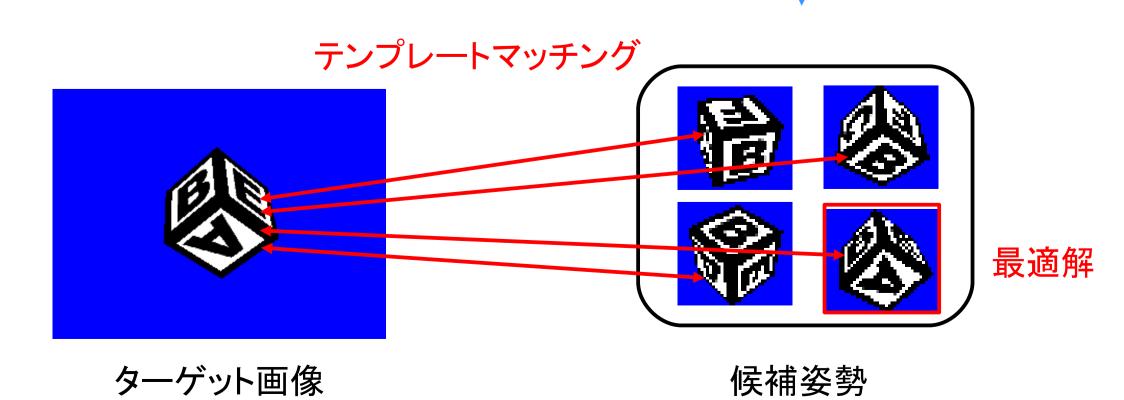
- ■マーカを3次元に拡張
- ■3次元物体の姿勢推定手法
 - ◆モデルベースの姿勢推定
 - ◆進化的手法

3次元的な回転への対応が難しい

遮蔽や3次元的回転への対応

3次元マーカ

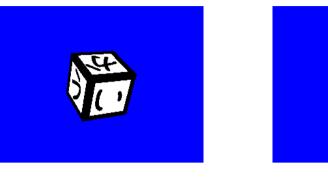

2. 研究目的


- ●ARへの応用
 - ■様々なマーカへの対応
 - ◆ユーザ任意

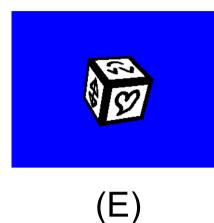
テクスチャの違いによる性能特定の調査

3. モデルベースの姿勢推定手法

- 候補姿勢生成
 - ■GAの染色体情報に基づいて個体数分生成 ◆回転角度情報: (r_x, r_v, r_z)
- ●GA(Genetic Algorithm): 遺伝的アルゴリズム
 - ■進化的計算法
 - ■生物の進化過程を模倣
 - ■最適解を取得
- ●GAによるテンプレートマッチング
 - ■候補姿勢の幾何学変換
 - ◆中心座標: (t_x, t_y)
 - ◆拡大倍率:s
 - ■画像間の類似度計算
 - ◆ターゲット画像
 - ◆候補姿勢



4. 評価実験


- ●テクスチャ5種類
 - アルファベット(A)
 - ■数字(B)
 - ひらがな(C)
 - ひらがな(手書き)(D)
 - ■記号(手書き)(E)
- ●各5種類のターゲット画像

■一定の回転角度で回転し取得

- ●GAパラメータ
 - ■世代数:100
 - ■個体数:50
- 獨 福 局 (C) (A) (B)

(D)

5種類のテクスチャパターン

5. 実験結果

- ●10種類の乱数種
 - ■平均成功率を算出
- ●成功判定
 - ■誤差
 - ◆推定結果の回転角度
 - ◆正解回転角度
 - ■判定の閾値
 - ◆4種類:±5度,±6度,±7度,±8度

姿勢推定成功率

texture	accuracy[%]					
	T = 5	T = 6	T = 7	T = 8		
Α	30	38	50	54		
В	42	48	56	58		
С	40	56	62	72		
D	38	48	56	62		
E	28	36	44	48		

T:成功判定の閾値

6. 考察

- ●高成功率
 - ■各面の特徴が大きく異なる場合 ◆ひらがな
- ●手書きテクスチャ
 - ■大きな影響なし
- ●類似した特徴による失敗
- アルファベット
- ◆B, E, F
- ■数字
- **♦**2, 3, 5, 6
- ■回転で変化しないテクスチャ
- ◆記号

7. まとめ

- ●テクスチャの違いによる性能特性の調査
 - ■各面の特徴が大きく異なる場合において高精度

ARへの応用には、各面に類似した特徴が少ないほうが適している

- ●今後の課題
 - ■類似した特徴を持つテクスチャ
 - ◆精度向上
 - ■動画像処理への応用